Quantum cryptography

Quantum communication

G. Chênevert

October 23, 2020
LYQ

Quantum cryptography

A quick overview of cryptography

What is cryptography?

Cryptography is a set of techniques that allows secure communication between two or more parties, even in the presence of rational adversaries.

Desirable properties for secure communication include:

- confidentiality
- message integrity
- sender authentication

Confidentiality

Symmetric encryption

The bulk of today's digital information transiting on communication is encrypted using secret-key encryption algorithms such as the

Advanced Encryption Standard (AES)

Standardized by the US NIST in 2001 following an international competition
Uses 128-bit random keys
Exercise: Eve could always try to guess what the key is to recover the message. . . How long in your estimate would it take her? (hint: much too long)

The key distribution problem

How do Alice and Bob end up with the secret keys to begin with??

Classical solutions to the key distribution problem

- previous access to a secure channel (!)
- trusted third party (e.g. Kerberos)
- public-key encryption (e.g. RSA)
- key agreement protocol (Diffie-Hellman)

This is the standard method used today for example in SSL/TLS ("https")
Based on the assumed hardness of the discrete logarithm problem

Diffie-Hellman key agreement protocol (1976)

- Alice and Bob agree on a set of (safe) parameters n and g
- Alice chooses a random α and computes $a \underset{\bar{n}}{\bar{n}} g^{\alpha}$
- Bob chooses a random β and computes $b \overline{\bar{n}} g^{\beta}$
- Alice sends a to Bob; Bob sends b to Alice
- Alice computes $k_{A} \equiv \bar{I}_{n}^{\alpha} ;$ Bob computes $k_{B} \equiv \overline{\bar{n}}^{a^{\beta}}$

Since $k_{A}=k_{B}$, Alice and Bob end up with a shared secret k.

Some problems remain

Used properly, this allows secure channels with perfect forward secrecy to be set up.
Main vulnerability is the man-in-the-middle attack in which an active adversary hijacks the key agreement and sets up a pair of secure channels with Alice and Bob.
\Longrightarrow authentication is needed on top of that, quite complex systems result
(Moreover: most asymmetric algorithms in use today would be broken by a large-scale quantum computer...)

Quantum key distribution (QKD)

often referred to as Quantum cryptography
Allows Alice and Bob to agree on a secret key without relying on hardness assumptions on certain computational problems

Two main protocols:

- BB84 - Bennett \& Brassard (1984)
based on quantum superposition
- E91 - Ekert (1991)
based on entanglement

Quantum cryptography

BB84: Idea

Prepare and measure qubits (photons) in two conjugate orthogonal bases, e.g. rectilinear:
and diagonal:
and make random base choices.

BB84: Basic step

- Alice randomly chooses a preparation basis $\mathcal{A} \in\{+, \times\}$ and a bit $a \in\{0,1\}$.
- Alice prepares a qubit in state $|\mathcal{A}\rangle_{a}$ and sends it to Bob on a quantum channel.

- Bob randomly chooses a measurement basis $\mathcal{B} \in\{+, \times\}$ and measures the qubit :

$$
b=\mathcal{M}_{\mathcal{B}}|\mathcal{A}\rangle_{a} .
$$

BB84: Basic step

- Alice and Bob tell each other (over a classical channel) which bases \mathcal{A} and \mathcal{B} they chose.
- If $\mathcal{A}=\mathcal{B}$: they now share the common, secret value of $a=b$
- If $\mathcal{A} \neq \mathcal{B}$: they throw a and b away and start again.

On average, a new shared secret bit is obtained every 2 such exchanges.

BB84: Example

Alice randomly picks $\mathcal{A}=\times$ and $a=0$.
She thus sends a $|\times\rangle_{0}=|D\rangle$ photon to Bob.

- First case: Bob by chance chooses the same basis $\mathcal{B}=\times$. Measuring the received $|D\rangle$ in the diagonal basis, he gets (with probability 1) $|D\rangle=|\times\rangle_{0}$ thus finds $b=0$.
- Second case: Bob unfortunately chooses the "wrong" basis $\mathcal{B}=+$. Measuring the received $|D\rangle$ in the rectilinear basis, he gets $|+\rangle_{0}=|H\rangle$ or $|+\rangle_{1}=|V\rangle$ with 50% probability each: the information about Alice's bit a is lost.

BB84: Security

No such thing as a passive attacker on a quantum channel! Necessarily "ActEve"

If she wants to learn something from the qubit in transit, she will:

- choose a measurement basis $\mathcal{E} \in\{+, \times\}$
- get $e=\mathcal{M}_{\mathcal{E}}|\mathcal{A}\rangle_{a}$ leaving the qubit in state $|\mathcal{E}\rangle_{e}$
- and Bob will in reality get $b=\mathcal{M}_{\mathcal{B}}|\mathcal{E}\rangle_{e}$.

BB84: Security

If Eve guesses correctly $\left(\mathbb{P}=\frac{1}{2}\right)$: Alice and Bob have no way to know!
But when she picks the wrong basis: there is 50% chance that $a \neq b$
So if Alice and Bob tell a and b to each other, they have $\frac{1}{4}$ chance of detecting Eve.
... but they just made their secret bits public

BB84: Security

Solution: exchange more bits than needed.
If Alice and Bob disclose the results of m successful exchanges, the probability that Eve goes undetected is $\left(\frac{3}{4}\right)^{m} \longrightarrow 0$ as $m \rightarrow \infty$.

With enough security bits, Eve will be detected with high probability.

Exercise

How many photons would Alice and Bob need to exchange on average if they want to establish a private 128 -bit key with negligible ($\leq \frac{1}{2^{128}}$) probability that an eavesdropper goes undetected?

Answer: 874

Quantum cryptography

E91: Basic idea

Alice and Bob share an entangled pair of qubits in Bell state

$$
|\Phi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} .
$$

Both measure their qubit, yielding random values a and b with $a=b$.
But how can Eve be detected? She destroys entanglement by measuring one of the qubits, but it's not noticeable in this setup.

E91: Protocol

The problem can be solved by rotating the measurement basis:

$$
\mathcal{B}_{\theta}:\left\{\begin{array}{l}
|0\rangle_{\theta}=\cos \theta|0\rangle+\sin \theta|1\rangle \\
|1\rangle_{\theta}=-\sin \theta|0\rangle+\cos \theta|1\rangle
\end{array}\right.
$$

- Alice chooses randomly $\alpha \in\left\{0, \frac{\pi}{8}, \frac{\pi}{4}\right\}$ and measures her qubit in basis \mathcal{B}_{α} \rightsquigarrow value $|a\rangle_{\alpha}$.
- Bob chooses randomly $\beta \in\left\{0, \frac{\pi}{8},-\frac{\pi}{8}\right\}$ and measures his qubit in basis \mathcal{B}_{β} \rightsquigarrow value $|b\rangle_{\beta}$.

E91: Security

If Alice and Bob selected the same basis $\left(\mathbb{P}=\frac{2}{9}\right)$: they now share a common random bit $a=b$.

The remaining bits can be used to compute the Bell-CHSH parameter S :

- if the pairs are entangled we get $S=2 \sqrt{2}$
- if Eve destroyed entanglement we have the classical behavior $|S| \leq 2$.

Exercise:

How many entangled pairs need to be transmitted on average in order for Alice and Bob to obtain 128 shared secret bits this way?

Answer: 576

